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Time allowed 3 1
2 hours.

Instructions • Full written solutions - not just answers - are
required, with complete proofs of any assertions
you may make. Marks awarded will depend on the
clarity of your mathematical presentation. Work
in rough first, and then write up your best attempt.
Do not hand in rough work.

• One complete solution will gain more credit than
several unfinished attempts. It is more important
to complete a small number of questions than to
try all the problems.

• Each question carries 10 marks. However, earlier
questions tend to be easier. In general you are
advised to concentrate on these problems first.

• The use of rulers and compasses is allowed, but
calculators and protractors are forbidden.

• Start each question on a fresh sheet of paper. Write
on one side of the paper only. On each sheet of
working write the number of the question in the
top left hand corner and your name, initials and
school in the top right hand corner.

• Complete the cover sheet provided and attach it to
the front of your script, followed by your solutions
in question number order.

• Staple all the pages neatly together in the top left
hand corner.

Do not turn over until told to do so.
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1. Find four prime numbers less than 100 which are factors of 332 − 232.

2. In the convex quadrilateral ABCD, points M,N lie on the side AB
such that AM = MN = NB, and points P,Q lie on the side CD such
that CP = PQ = QD. Prove that

Area of AMCP = Area of MNPQ =
1

3
Area of ABCD.

3. The number 916238457 is an example of a nine-digit number which
contains each of the digits 1 to 9 exactly once. It also has the property
that the digits 1 to 5 occur in their natural order, while the digits 1
to 6 do not. How many such numbers are there?

4. Two touching circles S and T share a common tangent which meets
S at A and T at B. Let AP be a diameter of S and let the tangent
from P to T touch it at Q. Show that AP = PQ.

5. For positive real numbers a, b, c, prove that

(a2 + b2)2 ≥ (a+ b+ c)(a+ b− c)(b+ c− a)(c+ a− b).

6. Let n be an integer. Show that, if 2 + 2
√
1 + 12n2 is an integer, then

it is a perfect square.


